C++中有许多限定符,修饰符,这里列了几个.

C++ 中的类型限定符

类型限定符提供了变量的额外信息。

限定符 含义
const const 类型的对象在程序执行期间不能被修改改变。
volatile 修饰符 volatile 告诉编译器,变量的值可能以程序未明确指定的方式被改变。
restrict restrict 修饰的指针是唯一一种访问它所指向的对象的方式。只有 C99 增加了新的类型限定符 restrict。

volatile 往往会用于多线程的修饰,比如:

1
2
3
4
5
6
7
8
9
10
11
12
volatile boolean isNext = false;

Thread A() {
// 第一个工作
// isNext = true;
}

Thread B (){
if (isNext) {
// 第二个工作
}
}

这里volatile 就是从来标记isNext, 以确保线程B每次都重新从内存中读取isNext的值,第二个工作一定在第一个工作之后进行。

但是要注意,这里无法保证顺序性,因为编译器编译的时候会重新打乱两个语句的先后顺序,因此做第一个工作和赋值给isNext不一定会按照你代码顺序正常执行。

explicit

C++提供了关键字explicit,可以阻止不应该允许的经过转换构造函数进行的隐式转换的发生。声明为explicit的构造函数不能在隐式转换中使用。

C++中, 一个参数的构造函数(或者除了第一个参数外其余参数都有默认值的多参构造函数), 承担了两个角色。 1 是个构造器 ,2 是个默认且隐含的类型转换操作符。

所以, 有时候在我们写下如 AAA = XXX, 这样的代码, 且恰好XXX的类型正好是AAA单参数构造器的参数类型, 这时候编译器就自动调用这个构造器, 创建一个AAA的对象。

这样看起来好象很酷, 很方便。 但在某些情况下(见下面权威的例子), 却违背了我们(程序员)的本意。 这时候就要在这个构造器前面加上explicit修饰, 指定这个构造器只能被明确的调用/使用, 不能作为类型转换操作符被隐含的使用。

explicit构造函数的作用

解析:

explicit构造函数是用来防止隐式转换的。请看下面的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Test1
{
public:
Test1(int n)
{
num=n;
}//普通构造函数
private:
int num;
};
class Test2
{
public:
explicit Test2(int n)
{
num=n;
}//explicit(显式)构造函数
private:
int num;
};
int main()
{
Test1 t1=12;//隐式调用其构造函数,成功
Test2 t2=12;//编译错误,不能隐式调用其构造函数
Test2 t2(12);//显式调用成功
return 0;
}

Test1的构造函数带一个int型的参数,代码23行会隐式转换成调用Test1的这个构造函数。而Test2的构造函数被声明为explicit(显式),这表示不能通过隐式转换来调用这个构造函数,因此代码24行会出现编译错误。

普通构造函数能够被隐式调用。而explicit构造函数只能被显式调用。

C++ 修饰符类型

C++ 允许在 char、int 和 double 数据类型前放置修饰符。修饰符用于改变基本类型的含义,所以它更能满足各种情境的需求。

下面列出了数据类型修饰符:

  • signed
  • unsigned
  • long
  • short

修饰符 signed、unsigned、long 和 short 可应用于整型,signedunsigned 可应用于字符型,long 可应用于双精度型。

修饰符 signedunsigned 也可以作为 longshort 修饰符的前缀。例如:unsigned long int

C++ 允许使用速记符号来声明无符号短整数无符号长整数。您可以不写 int,只写单词 unsigned、shortunsigned、long,int 是隐含的。例如,下面的两个语句都声明了无符号整型变量。

1
2
unsigned x;
unsigned int y;

为了理解 C++ 解释有符号整数和无符号整数修饰符之间的差别,我们来运行一下下面这个短程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#include <iostream>
using namespace std;

/*
* 这个程序演示了有符号整数和无符号整数之间的差别
*/
int main()
{
short int i; // 有符号短整数
short unsigned int j; // 无符号短整数

j = 50000;

i = j;
cout << i << " " << j;

return 0;
}

当上面的程序运行时,会输出下列结果:

1
-15536 50000

上述结果中,无符号短整数 50,000 的位模式被解释为有符号短整数 -15,536。